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Abstract

The response function of a dynamic system with viscous and friction damping is derived in the time domain and in the

frequency domain, under a prescribed initial displacement. The response function in the frequency domain appears as the

summation of three terms, each associated to a particular physical parameter of the dynamical system. Each of these

functions is then used as a building block for an approximation function, which is used in an iteration procedure to identify

the physical parameters of the dynamical system considered. At first, the solution in the frequency domain to a set of

parameters, including the initial condition, is used as data for an identification procedure based on the least squares

method. It is shown that the identification procedure provides the exact physical parameters of the system, including the

initial displacement. Then an approximation to the frequency response function (FRF) is calculated through Discrete

Fourier Transform (DFT) from the exact time response and is used in the identification procedure. The identified

parameters are only an approximation, though a good one, to the original ones because of the errors introduced in the

FRF by the DFT. Finally the procedure is applied to real acceleration data recorded during free-vibration tests on a base-

isolated building. In spite of problems related to the complex nature of damping and stiffness in isolation systems with

coupled sliding and rubber bearings, the identified parameters are reasonable and compare favourably with values

obtained by other methods.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic identification is a topic in structural dynamics whereby the dynamic characteristics of structural
systems are estimated by means of experimental tests and suitable dynamical models. Popular textbooks on
structural dynamics contain chapters and applications where methods are given on how to evaluate natural
frequencies and damping ratios of actual structures [1,2], but specialized literature on structural identification
is also available [3–8]. Extensive literature also exists on the identification of buildings and bridges under
ambient and earthquake excitation [9–11]. Among the parameters to be identified are undamped frequencies
of vibration, damping ratios and normal modes of vibration. These references to existing work are not meant
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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to be an exhaustive literature review on the topic but only aim at providing a proper setting for the
present work.

Some structural systems are characterized by both viscous type damping and by friction type damping.
Among those are some base-isolated buildings using laminated rubber isolators coupled with sliding isolators.
In this case, viscous damping comes from the first type of isolator while friction damping comes from the
second type. This type of base isolation has been used in Italy [12,13], and in Japan [14,15].

On base-isolated buildings, free-vibration tests are more easily performed than harmonic tests. In fact, due
to the low-fundamental frequency of the isolated building and to the large initial stiffness due to friction, it is
difficult to excite harmonically such a building; the harmonic actuator would be too large and cumbersome.
Instead it is quite easy to perform a free-vibration test whereby the building is subjected to an imposed
displacement and then is suddenly released. Several such tests have been performed in Italy [12,13] and in
Japan [16]. The main parameters that need to be evaluated for the dynamic identification of the isolation mode
[2], of a base-isolated building with laminated rubber bearings and sliding bearings are the initial
displacement, the natural frequency, the viscous damping ratio, the dynamic friction force and the residual
displacement. Although the initial displacement is usually imposed and therefore known in advance, its
evaluation from system identification may represent a suitable check on the reliability of the identification
procedure. The natural frequency, or equivalently the natural period, is usually amplitude dependent and only
an average value may be determined. Most important is the evaluation of the viscous damping ratio which
allows the separation of the amount of damping in the rubber bearings from that in the sliding bearings. The
evaluation of the dynamic friction force in the sliding isolators and of the residual displacement completes the
overall picture.

The object of the present paper is to develop a simple mechanical model which, on the basis of the measured
acceleration, allows one to evaluate the above mentioned dynamical parameters in the frequency domain. The
procedure in the time domain shown in Ref. [8] does not seem applicable to acceleration records derived from
tests on continuous or multidegree of freedom systems such as base-isolated buildings. The identification
procedure is initially tested on a theoretical problem, that is a problem with a known analytical solution, then
the theoretically generated acceleration is used to calculate numerically its counterpart in the frequency
domain. This is done in order to be able to have some confidence in the identification procedure in real life
conditions, when the response acceleration is known as a time series and a Fourier Transform can only be
evaluated numerically. Finally the identification procedure is tested using acceleration data recorded during
free-vibration tests on one of the Solarino buildings [12,13]. Because the main purpose of the present study is
the characterization of the isolation mode [2], the recorded acceleration is first treated to remove low
frequency spurious components and short lived high-frequency components associated with the structural
modes and with other disturbances [17].

That higher modes have a negligible effect in the identification of the isolation system may be shown by the
modal expansion of the spatial distribution of inertia forces [2]. Because the deformation of the isolation
bearings is dependent on the base shear which in turn depends on the inertia forces, it is the relative
importance of the modal base shears to rule the effect on the dynamic behaviour of the isolation system.
An example shown in Ref. [2] sets the second mode contribution to about 2% of that of the first mode, with
higher modes of quickly decreasing importance. Calculations performed specifically for the Solarino building
have shown even smaller contributions of the second and higher modes in the order of a few units in a
thousand [18].

2. System considered

For the sake of simplicity, a single degree of freedom system is considered, although it is implied that this
can represent the modal behaviour of a multidegree of freedom system. This system is shown in Fig. 1, where
the main mechanical ingredients are a mass m, a linear spring characterized by a constant stiffness k, a dashpot
with viscous damping coefficient c, a friction device applying a dynamic friction force fad. In addition to the
above parameters, a static friction force fas and a static external force f0, needed to apply the initial
displacement u0, must be considered. The force–displacement relationship for the dynamic friction force is also
shown in Fig. 1.
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Fig. 1. (a) SDOF system considered, (b) friction force–displacement relationship.
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3. Equation of motion

The equation of motion for the free vibration of the system shown in Fig. 1 may be written as follows:

m €uþ c _uþ kuþ f asHð�tÞ þ f adHðtÞsgnð _uoÞ þ 2
XN

j¼1

f adHðt� tjÞsgnð _ujÞ � f adHðt� trÞsgnð _uN Þ

¼ f 0Hð�tÞ þ f arHðt� trÞsgnðurÞ (1)

where H(t) is the Heaviside function, times tj are the time instants when the velocity vanishes and the
dynamic friction force changes sign, and tr is the time when the system comes to a rest. The fourth term on the
left-hand side of Eq. (1) represents the static friction force, which vanishes when the system is released,
the fifth term represents the dynamic friction force which replaces the static one when the motion starts.
Successive sign changes in the dynamic friction force are accounted for in each term in the summation, while
the last term on the left-hand side expresses the last jump in the dynamic friction force before the system comes
to a rest. The velocity argument in the sign functions always refers to the velocity just after the sign change.
The static force f0 on the right-hand side of Eq. (1) suddenly vanishes at time t ¼ 0, while the residual friction
force far appears at time tr when the system comes to a rest, thus balancing the force in the elastic spring.
The sign functions in Eq. (1) are used to provide the proper sign for the dynamic friction force and for the
static residual force.

Dividing Eq. (1) by the mass m and making suitable rearrangements, the following equation is obtained:

€uþ 2zon _uþ o2
nuþ o2

nuasHð�tÞ þ o2
nuadHðtÞsgnð _u0Þ þ 2o2

nuad

XN

j¼1

Hðt� tjÞsgnð _ujÞ

� o2
nuadHðt� trÞsgnð _uNÞ ¼ o2

nu0Hð�tÞ þ o2
nurHðt� trÞ (2)

where

uas ¼
f as

k
; uad ¼

f ad

k
; u0 ¼

f 0

k
; ur ¼

f ar

k
sgnðurÞ; o2

n ¼
k

m
(3)

and the initial displacement is given by

û0 ¼ u0 � uas (4)
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By taking the derivative of both sides of Eq. (2) one finds:

_ _ _uþ 2zon €uþ o2
n _u� o2

nuasdð�tÞ þ o2
nuaddðtÞsgnð _u0Þ þ 2o2

nuad

XN

j¼1

dðt� tjÞsgnð _ujÞ

� o2
nuaddðt� trÞsgnð _uN Þ ¼ �o2

nu0dð�tÞ þ o2
nurdðt� trÞ (5)

where d(t) is the Dirac d function.
By taking the Fourier transforms of each term in Eq. (5) this becomes

_ _ _

Uþ 2zon
€U þ o2

n
_U � o2

nuas þ o2
nuad sgnð _uoÞ þ 2o2

nuad

XN

j¼1

expf�iotjgsgnð _ujÞ

� o2
nuad expf�iotrgsgnð _uNÞ ¼ �o2

nu0 þ o2
nur expf�iotrg (6)

and by using the following relationships between the derivatives of Fourier transforms:

_ _ _

UðoÞ ¼ io €UðoÞ; _UðoÞ ¼
€UðoÞ
io
¼ ioUðoÞ (7)

Eq. (6) takes the following form:

1

o
2zono� iðo2

n � o2Þ
� �

€UðoÞ ¼ o2
nuas � o2

nu0 � o2
nuad sgnð _u0Þ � 2o2

nuad

XN

j¼1

expf�iotjgsgnð _ujÞ

þ o2
nuad expf�iotrgsgnð _uN Þ þ o2

nur expf�iotrg (8)
4. Solution in the time domain

In the various expressions of the equation of motion above, the times tj are not known in advance, unless the
motion has been recorded. Because in this paper we want to check the identification procedure against an
analytical solution, we briefly present this solution here. In the static phase, which precedes the time instant
t ¼ 0, the solution is given by

uðtÞ ¼ u0 � uas ¼ û0 8to0 (9)

In the successive phases of motion, displacement and velocity take the following expressions:

ukðtÞ ¼ ðû0 � uadÞ �
Xk�1
j¼1

2uad expfzontjg

" #
expf�zontg cos oDtþ

zon

oD

sin oDt

� �
� uadð�1Þ

k (10)

_ukðtÞ ¼ � ðû0 � uadÞ �
Xk�1
j¼1

2uad expfzontjg

" #
onffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p expf�zontg sin oDt (11)

where k ¼ 1,2,3,4y represents the current phase of motion and tj ¼ j(p/oD) (j ¼ 1,2,3y) denotes successive
times when the velocity of the system vanishes. The system comes to a rest whenever the following conditions
are satisfied:

tr ¼ r
p
oD

; juðtrÞj ¼ jurjpuas (12)

In any phase of motion the acceleration may be evaluated using the following expression:

€ukðtÞ ¼ o2
nuadð�1Þ

kþ1
� 2zon _ukðtÞ � o2

nukðtÞ (13)

which is the equation of motion for the kth phase. The exponent k+1 accounts for the sign of the friction
force, which is negative in the first phase and alternates in the subsequent phases. In this model it is assumed
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that the amplitude of the dynamic friction force remains constant during each phase of motion and changes
only its sign from one phase to the next.

Once the displacements û0, uad and the mechanical parameters on and z are known, the solution in terms of
displacement, velocity and acceleration may be obtained using Eqs. (9)–(13).

5. Solution in the frequency domain

The solution in the frequency domain may be obtained from Eq. (8) in the following form:

€UðoÞ ¼ €̂
U0ðoÞ þ €UadðoÞ þ €UrðoÞ (14)

where

€̂
U0ðoÞ ¼ �

io
o2

n � o2 þ i2zono
o2

nû0 (15)

€UadðoÞ ¼
io

o2
n � o2 þ i2zono

expf�iotrgsgnð _uNÞ � sgnð _u0Þ � 2
XN

j¼1

expf�iotjgsgnð _ujÞ

" #
o2

nuad (16)

€UrðoÞ ¼
io

o2
n � o2 þ i2zono

½expf�iotrg�o2
nur (17)

The solution in terms of velocity and displacement is easily obtained by using the standard relationships
between derivatives of Fourier transforms, as is shown by Eq. (7).

In particular, the moduli of the functions
€̂

U0ðoÞ and
_̂

U0ðoÞ take the following expressions:

€̂
U0ðoÞ
��� ��� ¼ offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2
n � o2Þ

2
þ ð2zonoÞ

2
q o2

nû0 (18)

_̂
U0ðoÞ
��� ��� ¼ o2

nû0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2

n � o2Þ
2
þ ð2zonoÞ

2
q (19)

It is easy to show that the peak frequencies for
_̂

U0ðoÞ
��� ��� and €̂

U0ðoÞ
��� ��� are given by

oV ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
(20)

oA ¼ on (21)

These expressions are valuable because, when friction is negligible, they tell us that the natural frequency of
the system coincides with the peak frequency of the acceleration (Eq. (21)) and the damping ratio may be
obtained by solving Eq. (20). If friction is small, but not negligible, Eqs. (20) and (21) still provide good values
for starting the identification procedure. We can anticipate that the starting values for the damping ratio and
the natural frequency in the identification of the Solarino tests are obtained by means of Eqs. (20) and (21).

6. Sample solution

In this section we derive a sample solution to be used as a test function for the identification procedure that
will be presented later. Let us take û0 ¼ 0:11m, uad ¼ 0.005m, fn ¼ on/2p ¼ 0.5Hz, z ¼ 0.10. The time
domain solution, obtained by means of Eqs. (9)–(13), is shown in Fig. 2 in terms of acceleration. This solution
provides the times tj ¼ j(p/oD), (j ¼ 1,2,3y), when the velocity vanishes and the dynamic friction force
changes sign, and also the residual displacement ur. The actual values are given in Table 1. The sampling
frequency has been set to 1000Hz to be consistent with the sampling frequency of the dynamical tests
performed on the Solarino building.
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Fig. 2. Analytically generated acceleration sample.

Table 1

Characteristic times of the sample solution and residual displacement

t1 (s) t2 (s) t3 (s) tr (s) ur (m)

1.0050 2.0101 3.0151 4.0202 0.0082
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Fig. 3. Fourier transform €U of the acceleration sample shown in Fig. 2 and its components
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U0, €Uad and €Ur: (a) real part,

(b) imaginary part.
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At this point, it is also possible to obtain the solution in the frequency domain by using Eqs. (14)–(17). This
is shown in Fig. 3, as well as the three right-hand side terms from Eq. (14), thus providing a measure of the
relative importance of each term.
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7. Identification procedure

In this section we assume that the Fourier transform of the sample solution shown in Fig. 2 can be
calculated analytically. We shall use this function to identify all the system parameters which allow one to
calculate the time domain solution, that is û0, uad, ur, on and z. These parameters can be conveniently
considered as the components of the following vector:

x ¼ ðû0; uad; ur;on; zÞ (22)

The identification procedure will be based on the least squares method. The known function is denoted by
F0(o) and the approximation function by F(o). The latter may be expressed as the following linear
combination of base functions:

F ðo;xÞ ¼ û0F 1ðo; xÞ þ uadF2ðo;xÞ þ urF3ðo;xÞ (23)

where the functions F1(o, x), F2(o, x) and F3(o, x) have the following expressions:

F1ðo;xÞ ¼
€̂

U0ðo;xÞ
û0

; F2ðo;xÞ ¼
€Uadðo;xÞ

uad
; F 3ðo;xÞ ¼

€Urðo;xÞ
ur

(24)

The approximation function can be conveniently written in the following form:

F ðo;xÞ ¼ F ðo; ~xÞ þ
qF

qû0

����
~x

û0 �
~̂u0

� 	
þ

qF

quad

����
~x

ðuad � ~uadÞ þ
qF

qur

����
~x

ður � ~urÞ

þ
qF

qon

����
~x

ðon � ~onÞ þ
qF

qz

����
~x

ðz� ~zÞ ¼ F ðo; ~xÞ þ F 1ðo; ~xÞ û0 �
~̂u0

� 	
þ F2ðo; ~xÞðuad � ~uadÞ

þ F3ðo; ~xÞður � ~urÞ þ F4ðo; ~xÞðon � ~onÞ þ F 5ðo; ~xÞðz� ~zÞ (25)

where the symbols with a �, collected in vector ~x, denote the current values of the model parameters.
The two additional base functions defined below are introduced into the procedure by Eq. (25):

F4ðo; ~xÞ ¼
qF

qon

����
~x

¼
2o2 ~on ioþ ~z ~on


 �
~̂u0 � A ~uad � expf�iotrg ~ur

� 	
~o2

n � o2 þ i2~z ~ono

 �2 (26)

F5ðo; ~xÞ ¼
qF

qz

����
~x

¼
2o2 ~o3

n �
~̂u0 þ A ~uad þ expf�iotrg ~ur

� 	
~o2

n � o2 þ i2~z ~ono

 �2 (27)

A ¼ expf�iotrgsgnð _uN Þ � sgnð _u0Þ � 2
XN

j¼1

expf�iotjgsgnð _ujÞ (28)

At this point the approximation function can be expressed more simply as follows:

F ðo; xÞ ¼ ~F þ ai
~F i ði ¼ 1; 2 . . . 5Þ (29)

with ai having the following expressions:

a1 ¼ û0 �
~̂u0; a2 ¼ uad � ~uad; a3 ¼ ur � ~ur; a4 ¼ on � ~on; a5 ¼ z� ~z (30)

For the functions ~Fiðo;xÞ to be defined, the components of the ~x vector and the characteristic times tj (j ¼ 1,
2,y, N) and tr need to be specified. These times can be read from the known function in the time domain
(for example from Fig. 2), while the initial values for the components of the x vector can be chosen arbitrarily
within the expected range. The error, defined as the difference between the exact solution F0(o) and the
approximate one F(o, x), may be expressed in the following way:

e2 ¼ hF � F0; F̄ � F̄ 0i ¼ ~F þ ai
~Fi � F 0; ~̄F þ ai

~̄F i � F̄0

D E
(31)
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where

hF ðo;xÞ;F ðo;xÞi ¼
Z þ1
�1

F ðo;xÞF ðo;xÞdo (32)

and a bar on top of a function denotes its complex conjugate.
Once the error has been defined, the least squares method can be applied, as shown by the

expressions below:

qe2

qak

¼ dik
~F i; ~̄F þ aj

~̄F j � F̄0

D E
þ ~F þ ai

~Fi � F 0; djk
~̄Fj

D E
¼ 0 (33)

~F k; ~̄F þ ai
~̄Fi � F̄ 0

D E
þ ~F þ ai

~F i � F0; ~̄F k

D E
¼ 0 (34)

~F k; ~̄F � F̄0

D E
þ ai

~Fk; ~̄Fi

D E
þ ~F � F0; ~̄Fk

D E
þ ai

~Fi; ~̄F k

D E
¼ 0 (35)

By noting that the following equalities hold,

Re ~F � F0; ~̄Fk

D E
¼ Re ~̄F � F̄0; ~Fk

D E
¼ Re ~Fk; ~̄F � F̄ 0

D E
(36)

Eq. (35) can be written as

Re ~F k; ~̄Fi

D E
ai ¼ Reh ~F k; F̄0i �Re ~F k; ~̄F

D E
(37)

Eq. (37) may be finally written in a more compact form as

Akiai ¼ bk ðk; i ¼ 1; 2; . . . ; 5Þ (38)

where

Aki ¼ Re ~Fk; ~̄F i

D E
; bk ¼ Reh ~Fk; F̄0i �Re ~Fk; ~̄F

D E
(39)

The solution of Eq. (38) provides a set of coefficients ai ði ¼ 1; 2; . . . ; 5Þ. These give us an approximation of
all the system parameters, thus allowing for the evaluation of the approximating function F(o, x), which
can then be used in Eq. (31) to calculate the error. Actually, a dimensionless form is used to evaluate the error,
that is

e2 ¼
hF � F0; F̄ � F̄0i

hF0; F̄0i
(40)

The current approximate values of the system parameters contained in vector x can be used for the
evaluation of the new base functions Fi(o, x), ði ¼ 1; 2; . . . ; 5Þ, and the procedure may be iterated. The iteration
may be terminated when the error in Eq. (40) becomes less than a given tolerance.
Table 2

Performance of the identification procedure using the Analytical Fourier Transform of the sample solution

Tolerance e Iterations û0 (m) uad (m) ur (m) z fn (Hz)

10�3 19 0.1098 0.0049 0.0084 0.1004 0.4977

10�6 20 0.1100 0.0050 0.0082 0.1001 0.4984

10�9 24 0.1100 0.0050 0.0082 0.1000 0.4997

10�12 28 0.1100 0.0050 0.0082 0.1000 0.4999

10�15 33 0.1100 0.0050 0.0082 0.1000 0.5000



ARTICLE IN PRESS
N.D. Oliveto et al. / Journal of Sound and Vibration 318 (2008) 911–926 919
8. Numerical applications

In this section we apply the identification procedure presented above to the sample solution shown in
Section 6. The starting values chosen for the components of the x vector are u0 ¼ 0.15m, uad ¼ 0.008m,
ur ¼ 0.007m, fn ¼ 0.4Hz and z ¼ 0.3. The application of the procedure provides the results shown in Table 2.
The cut-off frequency used to evaluate the integrals in Eq. (39) was 5Hz.

It is clear from the observation of Table 2 that the procedure converges to the exact results, which are
obtained after 33 iterations with a tolerance of 10�15. However, the closer the starting values are chosen to the
exact ones, the faster the procedure will converge.

9. Time series

In real applications, as in free vibration tests, the time domain acceleration is provided in the form of a
recorded time series with a specified time step or sampling frequency. In such cases, an exact Fourier
transform of the acceleration is not available. The usual approximation is in the form of a Discrete Fourier
Transform (DFT), performed via the Fast Fourier Transform algorithm (FFT). These transforms nowadays
can be performed easily and efficiently within a Matlab environment. In fact, the FFT is a typical Matlab
function.

To see how the identification procedure previously described performs under a real life application, the
analytically derived sample function has been sampled with a time step Dt ¼ 0.001 s, which corresponds to a
sampling frequency fc ¼ 1000Hz. The time series so obtained has been transformed into the frequency domain
by using the FFT algorithm. It is well known [19] that the DFT replaces an aperiodic function with a periodic
one; the longer the period, the closer the periodic function gets to the aperiodic one. In the present application
the number of sampled values is taken equal to N ¼ 217 ¼ 131,072, which corresponds to a period
T ¼ (N�1)Dt ¼ 131,071� 10�3 ¼ 131.071 s. Because the length of the non-zero segment of the considered
acceleration is only tr ¼ 4.0201 s, the remaining time interval is filled with zeros. Therefore, our time series is
composed of 4021 sampled values followed by 127,050 zeros.

A comparison between the given aperiodic function and the assumed periodic one is shown in Fig. 4. The
Fourier transform of the given aperiodic function is provided by Eq. (14) and has been shown in Fig. 3. The
DFT of the approximating periodic function is shown in Fig. 5. In the frequency range considered and with
the scale factor chosen, the DFT cannot be distinguished from the analytical Fourier transform shown in
Fig. 3. However, as higher frequency ranges are considered, the difference between FT and DFT tends to
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Fig. 4. (a) Aperiodic acceleration sample (tr ¼ 4.02 s) and (b) corresponding periodic function (T ¼ 131.07 s).
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become significant. Therefore when using the DFT to approximate the FT, the identification procedure should
be carried out in a frequency range where the difference between the DFT and the FT is negligible.

10. Numerical applications with time series and DFT

In this section we shall consider numerical applications which simulate real life experiments. The
acceleration function shown in Fig. 2 is sampled with a frequency of 1000Hz and transformed into the
frequency domain via DFT using the FFT algorithm. The result is shown in Fig. 6 in terms of modulus and
phase angle in the frequency range 0–5Hz. For comparison, in the same figure, the analytical Fourier
transform of the original function is shown. At the scale used in the figure differences appear to be negligible.
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Table 3

Performance of the identification procedure using the Discrete Fourier Transform of the sample solution

Tolerance e iterations û0 (m) uad (m) ur (m) z fn (Hz)

10�3 15 0.1099 0.0050 0.0076 0.0989 0.4981

10�5 16 0.1102 0.0050 0.0083 0.1005 0.4987

Exact values 0.1100 0.0050 0.0082 0.1000 0.5000

Error (%) 0.18 0.00 1.22 0.50 �0.26
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Fig. 7. Acceleration records from a Solarino building: (a) original record, (b) treated signal.
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Some differences however may be noticed especially in the high-frequency tail of the graphs. The starting
values chosen for the components of the x vector are the same as those used in Section 8. The results obtained
with a cut-off frequency of 5Hz are shown in Table 3.

The best results are obtained with an error tolerance e ¼ 10�5 after 16 iterations. These come quite close to
the assumed parameters, as can be seen by comparison with the exact values also shown in Table 3. The error
on each of the identified parameters is defined as

e ¼
pi � pe

pe

� 100 (41)

and is shown in the last row of Table 3.
The main result of this section consists in the realization that the discrete Fourier transform, necessary when

dealing with time series, introduces errors in the identification results. However, these errors are not large and
generally comparable with other engineering uncertainties.

11. Data from tests on the Solarino building

In this section the identification procedure is applied to the acceleration recorded during the free vibration
tests performed on a four storey base-isolated building in the town of Solarino [12,13]. The acceleration
recorded during the first dynamic test, on the second floor, roughly corresponding to the centre of mass of the
building, is shown in Fig. 7. On the left-hand side the original record is shown, while the plot on the right-hand
side shows the record after being treated for the removal of high-frequency components using wavelet
decomposition [13,17]. The treated signal reproduces the main characteristics of the original record, except for
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the irregular behaviour due to the high-frequency components. The high-frequency spikes towards the end of
the first half period of motion in the original signal may be due to the impact of the base slab against the
pushing and release device used in the tests.

One peculiar aspect of the treated signal, as well as of the original record, is the changing period with time.
It may be expected that this characteristic will affect the performance of the identification procedure proposed
in the previous sections. In fact, the model which is the foundation of the identification procedure assumes a
constant period.

Although in principle the initial displacement could be included within the parameters to be identified, for
the sake of obtaining more reliable results, the procedure has been adjusted assuming the initial displacement
to be known. Actually, in a free vibration test the initial displacement is imposed and therefore given. In the
case presented here it was 11.48 cm. This adjustment can be justified by the fact that a given acceleration
history may correspond to different displacement histories, depending on initial values of displacement and
velocity.

The starting values for the damping ratio and the natural frequency in the identification procedure are
obtained by means of Eqs. (20) and (21), where oV and oA are the frequencies of the peaks of velocity and
acceleration Fourier spectra of the recorded data. The acceleration spectrum is evaluated by FFT of the
recorded acceleration while the velocity spectrum is obtained by applying the standard relationship between
Fourier transforms of velocity and acceleration, as shown in Eqs. (7). By using this approach, the starting
values of the identification procedure are fn ¼ 0.4807Hz and z ¼ 0.2663, while uad ¼ 0.008m and
ur ¼ 0.007m, were chosen with some engineering judgement equal to the values used in the analytical test.
However, the procedure does not appear to be particularly sensitive to the starting values for z, uad and ur,
provided that these are kept within reasonable bounds. The times when the velocity vanishes must be also
evaluated from the acceleration record. These correspond to the jumps in the acceleration, due to the change
of sign in the friction force, and may be easily identified with some judgement. In the present case these times,
identified from the data shown in Fig. 7 (b), are t1 ¼ 1.233 s, t2 ¼ 2.343 s, t3 ¼ 3.377 s, t4 ¼ 4.428 s,
t5 ¼ 5.363 s, tr ¼ 6.226 s.

The identified system parameters obtained are:

uad ¼ 0:0027m; ur ¼ �0:0122m; z ¼ 0:1190; f n ¼ 0:4315Hz

A better understanding of the performance of the identification procedure may be obtained by comparison
of the acceleration plots in the time domain, which are shown on the left-hand side of Fig. 8. The graph on the
right-hand side of the same figure shows the error as a function of the number of iterations, giving an idea of
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the convergence rate of the procedure. It should be said that at each iteration a control on the step length has
been enforced to avoid feasible solutions being jumped over by the procedure.

Consideration of the acceleration graphs in Fig. 8 shows features that would be expected considering the
nature of the experimental data and the characteristics of the identification model. The time lag shown in the
figure, with elapsing time between identified and considered acceleration, is essentially due to the above
mentioned features, that is constant period in one case and decreasing period in the other.

12. Identification results from the Solarino tests

In this section a synthesis of the analysis on all the Solarino tests is presented. Six free vibration tests with
imposed initial displacement were performed on a base-isolated building in the town of Solarino in July 2004.
The building considered has four stories and five floor slabs. These are identified by numbers from 0 (isolation
floor) to 4 (roof). The second and third floors are close to the centre of mass of the building and the
accelerations recorded on those floors are used in the present identification procedure. The results are shown
in Table 4, with different backgrounds referring to tests performed in different days; the results shown with
shaded background were performed in one day while those shown on white background were performed on
another day a week later.

The identified frequencies and the corresponding periods match quite well whether obtained from data on
the second floor or on the third floor. Also the damping ratios turn out to be quite similar in the same test
whether obtained from data on one floor or on the other. The same can be said for the residual displacement
and for the friction displacement. Some differences are however noticed from different tests conducted under
similar initial displacements. There can be two reasons for these differences. The first one may be that the
initial displacement is somehow uncertain because no record of the residual displacement was taken during the
tests. Therefore the recorded initial displacement is not necessarily the true initial displacement. However,
the residual displacement, especially for large initial displacements, should be only a small fraction of the
imposed displacement and therefore the effect on the identified parameters should not be too large. Another
reason for the differences noted may be temperature, which may have affected the transducer’s calibration
factor. In fact, the tests were performed in different hours of the day in two different days and the larger
differences can be seen in similar tests performed in different days. The combination of these two factors may
be responsible for the variability of the identified parameters. As it has been shown in Refs. [12,13] the results
of the Solarino tests show a diminishing period with time; however the present model considers constant
stiffness and consequently constant period. The periods identified with the present procedure from the tests
and shown in Table 4 are generally slightly shorter than the first period from the tests. This is quite expected
Table 4

Identified parameters from tests on a Solarino building for the prescribed initial displacement û0
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Table 5

Identified stiffness and friction force in a Solarino building
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because the larger displacements, velocities and accelerations occur in the first period and these are likely to
affect the results considerably.

Additional information on the mechanical properties of the Solarino buildings may be obtained from the
identified parameters in Table 4. In fact, if the mass of the building is known with reasonable accuracy,
the identified frequencies may be used to evaluate the equivalent stiffness of the isolated building and from this
the dynamic friction force may be calculated from the second of Eqs. (3). The mass identified in Ref. [13] is
used to evaluate the equivalent stiffness and the dynamic friction force, shown in Table 5. The results are
shown in the same order as in Table 4.

Considering that the design stiffness of the Solarino building was 9240 kNm�1 [12] and the experimental
value from standard laboratory tests on two isolators was 9480 kNm�1, the identified stiffnesses shown in
Table 5 are quite accurate. The largest values correspond to a low amplitude test and are quite in line with the
initial stiffness measured during the static phase preceding the free vibration test. It is interesting that the
average value of the stiffness, calculated from the accelerations at the two floors considered, if the low
amplitude test is excluded, provides an average value of 9337 kNm�1, which is very close to the design value
and to the experimental one. The average value of the dynamic friction force evaluated by excluding the low
amplitude test and the anomalous results corresponding to the initial displacement of 10.75 cm turns out to be
25 kN. The Solarino buildings isolation system is composed of 12 high damping rubber bearings and of 13
sliding isolators [12,13]. By assuming that 50% of the weight affects the rubber bearings and that the other
50% affects the sliding isolators, it follows that the average dynamic friction coefficient is about 0.0041, in line
with the values provided by the manufacturer for dimpled and lubricated PTFE. The estimated value for the
friction coefficient must be intended only as a gross average value because the friction coefficient in sliding
bearings depends significantly on several variables such as pressure, temperature, velocity and number of
cycles of motion.

In conclusion it may be said that the parameters identified with the present procedure, from the
knowledge of the floor acceleration and of the initial displacement, are of sufficient accuracy and in
agreement with the values derived from laboratory tests. Also, the values of the equivalent viscous damping,
appropriate to the high damping rubber bearings, are in good agreement with those derived via a different
approach [13].

It may be of interest at this point to comment on the reason for the use in earthquake engineering
of low friction sliding bearings in place of perhaps cheaper ones with a higher friction coefficient, which
in turn would result in a higher energy dissipation capacity. While the fundamental period of vibration
would not be changed by the higher friction force, a considerably higher shear force would be trans-
mitted to the superstructure through the isolation system, producing higher damage. It may be worth
mentioning that, if feasible and not conflicting with other functions, the ideal isolation system would be
provided by a totality of perfectly sliding bearings which would keep the building still under the earthquake,
with the ground moving below it. A convenient number of low friction sliders, combined with a
complementary number of high damping rubber bearings, may be a useful compromise between ideal and
reality.
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13. Conclusions

A procedure for the identification in the frequency domain of structural systems with combined viscous and
friction damping devices has been presented. The mathematical model used as the basis of the identification
procedure considers constant stiffness and constant friction force. The response in the time domain and in the
frequency domain of such a system to an imposed initial displacement has been derived in closed form. The
response in the frequency domain, expressed as a summation of several terms, is used as the building blocks
for the identification procedure. The least squares method is used to match the actual solution with a feasible
solution in the solution space. It has been shown that the least squares method can find the actual (optimal)
solution provided that this belongs to the search space. This demonstration was made by using a mathematical
solution for the set of initial conditions and system parameters as the optimal solution and using a discrete
sample of this solution as the experimental data to be identified. This experiment showed that the
identification procedure works very well within a theoretical environment.

In real life experiments the sampled time history of the response is available rather than its Fourier
Transform. Therefore, the first step to be taken is to derive the frequency response function from the recorded
data using a Discrete Fourier Transform. Although this can be done efficiently using the Fast Fourier
Transform algorithm, it turns out to be only an approximation, often a poor approximation, of what would be
the real Fourier Transform of the actual solution. Fortunately, at least for systems with relatively low natural
frequency, the match between Fourier Transform and Discrete Fourier Transform turns out to be quite good
in a range of frequencies centred around the natural frequency of the system. This way of applying the
identification procedure to simulate real life conditions proved to be quite reassuring. The distortion
introduced by the DFT did not allow the exact solution to be obtained, but the approximate solution turned
out to be quite accurate, at least within engineering uncertainties.

The next step has been to apply the procedure to the real Solarino tests. The ideal situation would be to have
experiments on a structural prototype with the properties of the mathematical model considered. However, the
authors used results obtained from tests on a real building which had been seismically retrofitted by base
isolation. While it may be conceivable that the friction damping in the sliding bearings may somehow resemble
the Coulomb friction damping, it is well known that the damping in the rubber bearings is quite complex and
that high damping rubber bearings are better described by bi-linear models [20]. This is also confirmed by the
available test data that show amplitude dependent periods. Nevertheless, the proposed identification
procedure has been used with the available data to see whether reasonable results could still be obtained.
These experiments are described in Section 10 and in Section 11.

In Section 10, in order to obtain better results, the identification procedure has been adjusted assuming the
initial displacement to be known instead of being a parameter to be identified. In principle, even the residual
displacement could be considered as a test datum and it may be argued that the results of the identification
could be improved further in this case. The analysis of the identification results in the time domain shows that
the first cycle of motion is identified better than the following ones and that the time gap between recorded and
identified response tends to increase with increasing number of cycles. Natural frequency, damping ratio and
dynamic friction displacement seem to yield reasonable values. The identified parameters seem to be more
appropriate to the first cycle of motion than to the subsequent ones.

In Section 11, all the available dynamic Solarino tests are considered, using the horizontal accelerations
recorded on two floors supposedly close to the centre of mass of the building. The six dynamic tests were
performed in two different days, three in each day, and at different hours of the day. Some differences may be
noticed in the identified parameters from tests with similar imposed initial displacements performed in
different days. The possible reasons for those differences have been discussed. Overall the identified
parameters appear to be sufficiently reliable and in reasonable agreement with the values obtained with other
methods.

Looking to the future, an important aspect to be considered is that the mathematical model used as a basis
for the identification procedure does not quite match a realistic physical model for the building. This appears
to suggest the use of a different identification procedure, with a better model, directly in the time domain.
Nevertheless, the results obtained are quite encouraging and it would seem worthwhile to repeat the tests or to
perform other tests measuring accurately some measurable parameters such as the initial and the residual
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displacement. These new tests could be used to crosscheck the results of the present procedure and those
obtainable from a more accurate model and identification procedure in the time domain. It would also be
worth considering whether physical systems accurately described by the current model really do exist or may
be built without too much difficulty.
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